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Abstract In this paper, we propose a multiple human tracking method with alternately updating trajectories and multi-

frame action features (MHT-MAF). Even though occlusion or motion blur occurs due to the sudden movement of the drone,

ID switches are prevented by the stable MAF. In the experiments, we verified the effectiveness of the proposed method using

the Okutama-Action dataset. Our code is available online (https://github.com/hitottiez/mht-paf).
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1. Introduction

Human trajectory statistics are fundamental infor-

mation used for marketing, urban development, and

sports analysis. To estimate human trajectories,

computer-vision-based multiple human tracking is a

powerful tool, which detects multiple humans and main-

tain their identities (IDs) over an image sequence1). In

places where camera installation is difficult, such as

temporary events and festival venues, drones are use-

ful for flexibly capturing scenes.

Human tracking methods are categorized into online

tracking methods and offline tracking methods2). In this

work, we focus on offline tracking methods as they are

more accurate than online tracking methods in general

because they can use future frame observations when

handling the current frame. Most offline tracking meth-

ods3)˜8) are based on the tracking-by-detection fashion

due to recent improvements in the accuracy of human

detection. Tracking-by-detection solves multiple human

tracking problems by data association3). Data asso-

ciation matches detection results between consecutive

frames based on some cues.

Human tracking methods3)˜8) use human appearance

features and/or human position features as cues. In

such methods, when occlusion or motion blur occurs,

the human appearance feature and the estimated hu-

man position can change dramatically, which can cause
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(a) Previous methods (b) Proposed method

Fig. 1: Difference between previous methods and the

proposed method.

frequent ID switches (i.e., that means the target human

ID changes to another ID).

Some human tracking methods9)˜15) use an action fea-

ture as a cue to improve the human tracking accuracy.

In such methods, an action feature is extracted from a

single frame (Fig. 1(a)).

However, the single-frame action feature (SAF) is un-

stable because it is extracted from a single frame with-

out considering other frames. The SAF is unstable,

especially when occlusion or motion blur occurs due to

the sudden movement of the drone. An action feature

would be obviously effective if it is extracted from mul-

tiple frames, but a multi-frame action feature (MAF)

and human tracking are interdependent. Specifically, to

extract a MAF for human tracking, the human tracking

(trajectory estimation) needs to be done beforehand.

In this paper, we propose a multiple human track-

ing method with alternately updating trajectories and

multi-frame action features (MHT-MAF). Once human

tracking is done, MAF is extracted based on the trajec-

tory and used again for human tracking. Furthermore,
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trajectories and MAF are updated alternately with sev-

eral steps (Fig. 1(b)). Even though occlusion or motion

blur occurs, ID switches are prevented by the stable

MAF.

The rest of the paper is organized as follows. First, we

review related work in Section 2. Next, we describe con-

ventional multiple human tracking in Section 3. Then,

we describe the multiple human tracking using SAF in

Section 4. We describe the alternately updating trajec-

tories and MAF in Section 5. In Section 6, we describe

the experiments we conducted. Finally, we conclude our

work in Section 7. Note that this paper is an extended

version of our previous work16) with the inclusion of an

additional method and experiments.

2. Related Work

In this section, we review related work in the areas of

human tracking, action recognition, and action detec-

tion.

2. 1 Human Tracking

In human tracking, multiple humans are detected

while maintaining their IDs. In this paper, we focus on

offline tracking methods. Zhang et al. proposed MCF,

which solves human tracking tasks as a minimum-cost

flow problem3). Berclaz et al. reformulated human

tracking as a constrained flow optimization in a con-

vex problem4). Milan et al. proposed a human tracking

method that is solved by continuous energy minimiza-

tion5). Bochinski et al. proposed a fast and accurate

human tracking method by incorporating single object

trackers6). Maksai et al. proposed a method that iter-

atively builds a rich training set for human tracking7).

Zhang et al. proposed a human tracking and 3D local-

ization method using a drone camera8). When occlusion

or motion blur occurs, these previous methods are not

particularly accurate because they use only human ap-

pearance features and/or positions as cues.

2. 2 Action Recognition

For action recognition, an action class is estimated

based on a given spatio-temporal action position. Many

action recognition methods have been proposed17)˜21).

Simonyan et al. introduced a two-stream network us-

ing RGB and flow images17). Our proposed method

is based on a two-stream network due to its simplicity.

Wang et al. proposed TSN, which divides an image into

several segments in a temporal domain18). Donahue et

al. introduced LRCN, which performs long-term action

recognition using LSTM19). Tran et al. proposed C3D,

which extracts a feature by 3D convolution20). Carreira

et al. proposed I3D, which uses 3D convolution, the

parameters of which are based on 2D convolution21).

2. 3 Human Tracking and Action Recognition

There are methods that perform both human track-

ing and action recognition. Yamaguchi et al. pro-

posed an agent-based behavioral model of pedestrians

for human tracking9). Alahi et al. proposed an LSTM

model that can learn the general movements of hu-

mans and predict human trajectories10). Robicquet et

al. presented a method for predicting human trajecto-

ries based on social etiquette11). Li et al. proposed a

human tracking method incorporating action recogni-

tion at individual, interaction and group activity lev-

els12). Yang et al. proposed STAM to obtain an at-

tention for the target human using a drone camera13).

In these methods, human tracking and action recogni-

tion are performed separately; thus, mutual dependen-

cies are avoided. Khamis et al. proposed an efficient

flow model for joint human tracking and action recog-

nition14). Choi et al. presented a unified framework for

human tracking and group action recognition based on

a hierarchical graphical model15). These two methods

are not particularly accurate when there is occlusion

or motion blur because they extract the action feature

from only a single frame and do not update it using

other frames.

2. 4 Action Detection

In action detection tasks, spatio-temporal action po-

sitions and action classes are estimated. Many action

detection methods have been proposed19)22)˜26). Action

detection tasks can be classified into three categories.

(1) Spatial action detection: Gkioxari et al. introduced

a model based on action tubes constructed from 3D

region proposals, CNN features, and SVMs22). Lin et

al. proposed SSAD, which is an end-to-end neural net-

work23). (2) Temporal action detection: LRCN per-

forms temporal action detection using LSTM19). Shou

et al. introduced multi-stage CNN that employs 3D

CNNs for temporal action detection24). (3) Spatio-

temporal action detection: Hou et al. proposed T-CNN,

which is a unified deep neural network that detects ac-

tions based on 3D convolution features25). Kalogeiton

et al. proposed an ACT detector that is also a unified

deep neural network based on stacking single-frame fea-

tures26). All these methods use action information as a

cue for human tracking. However, they do not use a spe-

cific human appearance feature that captures human ID

as cues.
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Fig. 2: Multiple human tracking in tracking-by-

detection fashion.

Fig. 3: An example of the cost flow network with 3

frames and 7 observations.

3. Multiple Human Tracking

In this section, we describe the multiple human track-

ing problem (Section 3. 1) and a general solution to the

problem (Section 3. 2).

3. 1 Problem Formulation

Let Y = {yi} be a set of observations of a human,

each of which is a human detection result. The i-th

observation is defined as yi = (ti,bi,xi). t denotes a

time step. b = (x, y, w, h) denotes the bounding box of

a human. x and y are the x and y coordinates of the

upper left corner of a rectangle, and w and h are its

width and height. x denotes a set of features related

to multiple cues. Let Yk = (yk1
,yk2

, · · · ,yklk
) be the

k-th human trajectory. Human tracking is a process for

estimate all trajectories Ω = {Yk}, given a sequence of

images. Since one human can belong to only one trajec-

tory, we can use the constraint that Y can not overlap

with each other as follows:

Yk ∩ Yl = ∅, ∀k |= l. (1)

3. 2 Solution

Fig. 2 shows conventional multiple human tracking in

tracking-by-detection fashion. First, multiple cues for

multiple human tracking are extracted for each frame

(Section( 1 )). Then, data association is performed (Sec-

tion( 2 )).

( 1 ) Multi-cue Extraction

For each yi, two types of cues are often used. From

the cues, a location feature (xloc
i ) and an appearance

feature (xapp
i ), i.e., xi = (xloc

i ,xloc
i ) are extracted.

xloc = (x, y, w, h) is the bounding box of a human, and

it is also used for b. xapp is an appearance feature.

Location Feature: Each bounding box xloc
i and its score

xsco are estimated by SSD27). The backbone model of

the SSD is VGG1628).

Appearance Feature: The appearance feature xapp
i cap-

tures a human appearance. In the feature space, two

features indicate the same human when the distance

between their features is small. The distance metric of

the feature space is extracted by a Siamese network that

has two inputs and one output29). The network accepts

a pair of human images and outputs a binary indicator

of identity. Two backbone models of the Siamese net-

work share the same weights, and each backbone model

is WideResNet30). In the training phase, while a pair of

the same human is annotated as “1”, a pair of different

humans is annotated as “0”. In the inference phase,

one of the two backbone models is used to extract the

appearance feature.

( 2 ) Data Association

Data association is performed based on the multiple

cues described in Section( 1 ). We formulate data asso-

ciation as a minimum-cost flow problem3) because that

is one of the most typical and intuitive approaches. In

a minimum-cost flow problem, data association is mod-

eled as a network, where each node represents an ob-

servation and each edge represents a transition between

two observations. Source and sink nodes can initialize

and terminate trajectories. A solution is obtained by

finding the minimum-cost flow in the network.

Fig. 3 shows an example of the cost flow network.

For every observation yi, create two nodes ui, vi, cre-

ate an edge (ui, vi) with cost c(ui, vi) = cobsv(i) and

flow f(ui, vi) = fobsv(i), an edge (s, ui) with cost
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c(s, ui) = centr(i) and flow f(s, ui) = fentr(i), and

an edge (vi, z) with cost c(vi, z) = cexit(i) and flow

f(vi, z) = fexit(i). For every transition from yi to yj ,

create an edge (vi, uj) with cost c(vi, uj) = ctran(i, j)

and flow f(vi, uj) = ftran(i, j). The minimum-cost flow

problem for human tracking estimates a set of indicator

variables F as follows:

F = {(fentr(i), fobsv(i), ftran(i, j), fexit(i))
| ∀i, ∀j, i |= j, ti |= tj}, (2)

where fentr(i), fobsv(i), ftran(i, j), and fexit(i) ∈ {0, 1}.
cobsv(i), which is the observation cost of the i-th ob-

servation, is based on a logit function. A variable of the

logit function, probability p, is calculated by a logistic

function with the score of the location feature (xsco) as

a variable.

cobsv(i) = b− log
p

1− p
, (3)

p =
1

1 + exp(α+ β · xsco(i))
, (4)

where b denotes a predefined bias, and α and β are the

parameters of the logistic function. cobsv ∈ (−∞,+∞).

In the training phase, α and β are estimated by the

Fisher scoring algorithm.

ctran(i, j), which is the transition cost between the i-

th observation and the j-th observation, is based on a

logistic function. A variable of the logistic function, q,

is calculated by a nonlinear function g.

ctran(i, j) = − log
1

1 + exp(q)
, (5)

q = g(ciou(i, j), capp(i, j)), (6)

where ciou and capp denote an IoU (Intersection over

Union) score and a cosine distance of appearance fea-

tures, respectively. g is represented by multiple deci-

sion trees. ctran ∈ (0,+∞). In the training phase, the

parameters of g are estimated by a gradient boosting

algorithm31).

centr(i) is the entry cost, which is an initialization

cost of the trajectory of the i-th observation. Similarly,

cexit(i) is the exit cost, which is a termination cost of

the trajectory of the i-th observation.

F is estimated by minimizing the following objective

function with non-overlapping constraints3):

Fig. 4: Single-frame action feature (SAF) extraction

model.

F ∗ = arg min
F

[∑
i

centr(i)fentr(i) +
∑
i

cobsv(i)fobsv(i)

+
∑
i

∑
j

ctran(i, j)ftran(i, j) +
∑
i

cexit(i)fexit(i)

]
.

s.t. fentr(i) +
∑
j

ftran(j, i) = fobsv(i)

= fexit(i) +
∑
j

ftran(i, j), ∀i

(7)

The objective function is minimized by the scaling

push-relabel method32).

4. Multiple Human Tracking with Single-

Frame Action Feature (SAF)

In the human tracking method described in Section

3, human appearance features and positions are used

as cues. When occlusion or motion blur occurs, the hu-

man appearance feature and position change dramati-

cally, and ID switches occur frequently. To prevent ID

switches, a single-frame action feature (SAF) can serve

as an effective cue for data association.

4. 1 Single-Frame Action Feature (SAF)

A human region is cropped corresponding to xloc
i .

For each cropped image, a SAF xsaf
i is extracted. Fig.

4 shows the SAF extraction model. The network is a

four-stream neural network.

The network has two modalities, spatial and tem-

poral, and each modality handles the inputs by using

a two-stream network17)18). While the spatial network

utilizes an RGB image, the temporal network utilizes an

optical flow image. For optical flow calculation, we used
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Fig. 5: Alternation of data association and MAF extraction. In this scenario, one human performs the same action

a across frames, and occlusion or motion blur occurs. The horizontal axis denotes time, and the vertical axis de-

notes location. The type of line (solid or dotted) figuratively represents the human appearance feature. An action

feature (SAF/MAF) for each human is represented as a probability distribution of actions a and b. Alternation is

performed in each step, and ID switching is prevented.

Fig. 6: Multi-frame action feature (MAF) extraction.

TV-L1 optical flow33), a method that is both fast and

accurate. The horizontal and vertical components are

used separately. The backbone model of each stream is

ResNet10134).

For each modality, two types of images, i.e., local

and global cropped images, are input to the network.

The local cropped image is obtained from a square

bounding box which fits to the long side of xloc
i . The

global cropped image is obtained based on an expanded

bounding box of the local cropped image, taking xloc
i as

the center. The expansion ratio is set as a predefined

parameter μ. The global cropped image introduces the

spatial context such as objects and other humans.

The network is trained to recognize multi-label ac-

tions such as (walking, carrying). A discriminative ac-

tion feature can be extracted from the network. The

loss function is a binary cross entropy loss for each class.

A SAF xsaf
i is obtained by averaging the features from

spatial and temporal modalities. The feature of each

modality is extracted from the layer after a fully con-

nected layer in each modality.
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4. 2 Transition Cost including SAF

The transition cost ctran(i, j) is modified to include

a SAF. csaf(i, j), which denotes a cosine distance of a

SAF, is added into the nonlinear function g as a vari-

able:

r = g(ciou(i, j), capp(i, j), csaf(i, j)). (8)

5. Alternate Update of Trajectories and

Multi-Frame Action Features (MAF)

The SAF described in Section 4 is unstable because

it does not consider other frames. In this paper, using

a human tracking result (F ∗) and SAF (xsaf), MAF

(xmaf) is extracted and used again for human tracking.

Furthermore, they are updated alternately over several

steps. This alternate update is the key feature of the

proposed method.

Fig. 5 shows the alternation of data association and

MAF extraction. In this scenario, one human performs

the same action a across frames, and occlusion or mo-

tion blur occurs. The horizontal axis denotes time, and

the vertical axis denotes location. The type of line (solid

or dotted) figuratively represents a human appearance

feature. An action feature (SAF/MAF) for each human

is represented as a probability distribution of actions

a and b. When occlusion or motion blur occurs, both

the location and appearance feature change remarkably.

Alternation is performed in each step.

Step 1: SAF is extracted from each frame, and data

association is performed. When occlusion or motion

blur occurs, the association fails because the SAF is

unstable (action b has a higher probability than a).

Step 2: Using the trajectories obtained in step 1,

MAF extraction is performed. Fig. 6 shows MAF ex-

traction. The red or yellow circles in each vector denote

actions, the values of which exceed a predefined thresh-

old. MAF extraction is based on a sliding window. At

time t, the MAF x(t)maf is calculated as follows:

x(t)maf =
1

λ

�t+λ/2�∑
t=�t−λ/2�

x(t)saf , (9)

where � � and 	 
 denote a ceiling function and a floor

function, respectively, and λ is a predefined parameter

of the window length. By averaging, MAF is stable (ac-

tion a has a higher probability than b) even when the

SAF is unstable because of occlusion or motion blur.

As a result, the association is correct (action a matches

action a). After step 3, the procedure from step 2 is

repeated for the predefined number of steps.

6. Experiments

We conducted human tracking experiments to ver-

ify the effectiveness of the proposed human tracking

method.

6. 1 Dataset

We used the Okutama-Action dataset35), which is

a human action detection dataset based on the aerial

view. The dataset is very challenging because it in-

cludes significant changes in a human’s size and aspect

ratio, abrupt camera movement, and dynamic transi-

tions of multi-label actions. The dataset contains 43

videos and was split into training (33 videos) and test

data (10 videos). The videos are recorded at 30 FPS,

and the total number of images in the dataset is 77, 365.

Two drones filmed nine participants from a distance of

10–45 meters and camera angles of 45–90 degrees. The

resolution of the images is 4K (3, 840 × 2, 160). Each

bounding box has one or more action labels. Twelve ac-

tion labels are divided into three categories: human-to-

human interactions (handshaking, hugging), human-to-

object interactions (reading, drinking, pushing/pulling,

carrying, calling), and no-interaction (running, walk-

ing, lying, sitting, standing). Multiple actions almost

always consist of one no-interaction action and one ac-

tion from the other two categories.

6. 2 Experimental Setting

The human detection model (SSD) was trained us-

ing the Okutama-Action dataset for 6, 000 iterations

with a learning rate of 10−4. The input size of SSD

was 512 × 512. Note that we used the same hu-

man detection results for the previous methods and

the proposed method. The appearance feature extrac-

tion model (WideResNet) was trained using the MARS

dataset36). The SAF extraction model was trained using

the Okutama-Action dataset for 5, 000 iterations with

a learning rate of 10−4. The dropout ratio was set to

0.7. In the data augmentation, random cropping and

horizontal/vertical cropping were employed. We empir-

ically set μ = 3, λ = 15. The observation cost model

and the transition cost model were trained using the

Okutama-Action dataset. For data association param-

eters, we empirically set centr(i) = 10, cexit(i) = 10, and

b = −0.5.

6. 3 Evaluation of Human Tracking

We evaluated the human tracking (Estimating xloc

and F ). The IoU threshold between the ground truth

and the estimated bounding box was set to 0.5. For

evaluation, we used recall, precision, ID switch (IDs),
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Table 1: Human tracking performance.

Recall (%) ↑ Precision (%) ↑ IDs ↓ MOTA ↑ MOTP ↑
Online DeepSORT38) 29.10 70.81 584 17.29 32.85

MCF3) 32.42 73.93 597 21.43 32.99

Offline MHT-SAF 32.13 74.10 558 21.20 33.01

MHT-MAF 32.48 74.24 528 21.57 33.01

Fig. 7: Example where ID switch is caused by motion

blur, but finally the ID switch is prevented by the pro-

posed MHT-MAF.

multiple object tracking accuracy (MOTA), and mul-

tiple object tracking precision (MOTP) as metrics37).

MOTA is a widely used and comprehensive metric that

combines three error sources (false negative, ID switch,

and false positive).

Table 1 shows the human tracking performance.

DeepSORT38) is an online method that uses location

features and appearance features. MCF3) uses lo-

cation features and appearance features. MHT-SAF

uses location features, appearance features, and SAF

without alternations (step 1). MHT-MAF is the pro-

posed method with alternations (step 6). The pro-

posed method maintains almost the same recall (MCF:

32.42; MHT-MAF: 32.48), and almost the same pre-

cision (MCF: 73.93; MHT-MAF: 74.24). The num-

ber of ID switches decreased by 69 (MCF: 597; MHT-

MAF: 528). MOTA improved 0.14 (MCF: 21.43; MHT-

MAF: 21.57). MOTP is almost the same (MCF: 32.99;

MHT-MAF: 33.01) because MOTP does not consider

ID switches.

Fig. 7 shows an example where ID switch occurs be-

cause of motion blur, but finally the ID switch is pre-

vented by MHT-MAF. The example was picked up from

video 1.2.10. #(number) denotes a frame ID. For each

bounding box, an action feature is illustrated, where

“c” denotes “carrying” and “w” denotes “walking”. In

MCF, ID switch occurs at frame 1584 because loca-

tion and appearance features are unstable. In MHT-

SAF (Step 1), frames 1583, 1584, and 1585 are asso-

ciated via “carrying” and “walking”, but frames 1582

and 1583 are not associated. In MHT-MAF (Step 2),

frames 1582 and 1583 are estimated as “carrying” due

to MAF extraction, then frames 1582, 1583, 1584, and

1585 are associated. Finally, in MHT-MAF (Step 6), all

frames 1582, 1583, 1584, and 1585 are stably estimated

as “carrying” by repeating MAF extraction.

Next, we evaluate the alternation of human tracking

and MAF extraction. Fig. 8(a) shows the recall and pre-

cision of each step. In step 1, recall is approximately

74% and precision is approximately 32%. After that,

recall and precision remain almost the same. Recall

and precision considerably depend on the accuracy of

human detection, and it does not change so much with

the proposed alternation. Fig. 8(b) shows the number

of ID switches and MOTA in each step. The number

of ID switches is 558 in step 1. Then, the number of

ID switches decreases to 528 in step 6. After that, it

increases to 575 in step 10. MOTA has a similar ten-
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(a) Recall and Precision. (b) ID switch and MOTA.

Fig. 8: Performance of human tracking in each step.

Fig. 9: Example of frequent ID switches because two humans are detected in only one bounding box alternately.

dency as the number of ID switches. The appropriate

number of alternations is approximately 5 or 6.

Then, we analyze the scene of frequent ID switches in

step 10. Fig. 9 shows an example with two humans who

are standing. We picked up 5 frames (frame 1002, ...,

1006) from video 1.2.10. Before those five frames, the

humans are tracked as two trajectories (ID:0 and ID:23)

for each frame. In the five frames, however, these is only

one estimated bounding box (location feature) for each

frame. Furthermore, the bounding box includes almost

part of the two humans; thus, two trajectories (ID:0

and ID:23) are estimated unstably in the five frames.

In the evaluation, the ground truth corresponding to

the five estimated bounding boxes (ID:0 and ID:23) is

the left man. This phenomenon is a main reason for

the frequent ID switches. Preventing the false negatives

caused by occlusion is an important issue for future re-

search.

6. 4 Evaluation of Action Recognition

We evaluated the accuracy of action recognition,

given the ground truth of human tracking. Action

recognition is regarded as an estimation problem of

ai, ∀i, where a denotes a vector of binary values for

action classes. When there are any actions, the

SAF/MAF values of which are higher than the prede-

fined threshold ε = 0.4, then the actions are determined

to be recognized. Otherwise, the action of the i-th ob-

servation is determined to be “Unknown”. The purpose

of the action recognition experiment was to investigate

MAF extraction and the global cropped image. The

evaluation was performed at the frame level. Table 2

shows the accuracy of action recognition.

Multi-frame-based Action Recognition: For the

local cropped image, the accuracy in the case of multi-

frame-based recognition is higher than that of single-

frame-based recognition (single frame: 42.88; multiple

frames: 45.09). For the local+global cropped image,

the accuracy in the case of multi-frame-based recog-

nition is higher than that of single-frame-based recog-

nition (single frame: 45.94; multiple frames: 47.80).

Therefore, multi-frame-based action recognition, i.e.,

MAF, is more effective.

Global Cropped Image: Let us compare the lo-

cal cropped image to the local+global cropped image

in single-frame-based action recognition. The accuracy

of the local+global cropped image is higher than that

of the local cropped image (local: 42.88; local+global:

45.94). For human-to-human interactions and human-

to-object interactions, the global cropped image is more

effective. These interactions need the global context

such as humans or objects for recognition. On the

other hand, for no-interaction, the local cropped im-

age is more effective. The no-interaction case needs

only human motions for recognition. The average ac-
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Table 2: Accuracy of action recognition (%).

Human to human interactions Human to object interactions No-interaction Average

handshaking hugging reading drinking pushing/pulling carrying calling running walking lying sitting standing

Single frame (local) 7.78 21.47 57.26 0 55.95 53.57 15.08 43.63 79.97 24.19 76.31 79.37 42.88

Single frame (local+global) 17.11 24.60 61.27 0 64.31 74.13 17.82 41.18 85.17 14.33 75.41 75.89 45.94

Multi frames (local) 9.64 17.68 56.75 0 60.88 56.94 13.97 46.72 87.19 26.56 81.94 82.83 45.09

Multi frames (local+global) 18.07 24.81 61.37 0 68.28 78.20 16.76 43.55 90.73 15.40 78.04 78.40 47.80

Fig. 10: Difference between mAP when the number of

steps is 10 and mAP when the number of steps is 1.

curacy is the highest in the case of the combination of

multi-frame-based action recognition and local+global

cropped images (47.80).

6. 5 Discussion

The Appropriate Number of Alternations: It

may be good to decide the number of alternations based

on the type of human action. As described in Section

6. 4, the accuracy of action recognition is improved by

using multiple frames. Therefore, if the accuracy of

action recognition improves as the number of steps in-

creases, the accuracy of human tracking also improves.

We used mean Average Precision (mAP) as an evalu-

ation metric for action recognition. Fig. 10 shows the

difference between mAP when the number of steps is

10 and mAP when the number of steps is 1 for each

action. The mAP of “pushing/pulling” and “walking”

improved by about 1.2 points. As described in Table 2,

these two actions have high accuracy to be recognized

from a single frame. However, the mAP of “hugging”

was reduced by about 0.5 points. As described in Fig.

9, the situation where humans are close to each other

causes the frequent ID switches. Thus, it is considered

effective to increase the number of iterations when tar-

geting an action that can be easily recognized from a

single frame, and to reduce the number of iterations

when targeting an action in which multiple humans are

close to each other.

Evaluation on Other Dataset: We conducted

a human tracking experiment using Drone-Action

dataset39). The dataset is an action recognition dataset

and contains videos recorded from a low-altitude, slow-

flying drone. The videos are recorded at 25 FPS. The

resolution of the images is HD (1, 920 × 1, 080). The

experimental setting is the same as described in Sec-

tion 6. 2. Fig. 11 shows an example of human track-

ing on Drone-Action dataset. We used the sequence

“S8 running toRight sideView HD” because it includes

a typical action. In MHT-SAF (Step 1), ID switches

occur at frames 40 and 42. In MHT-MAF (Step 2),

these ID switches are prevented. “Running” is con-

sistently estimated at all five frames, and it helps the

correct association. Table 3 shows the human tracking

performance on Drone-Action dataset. The proposed

method maintains the same recall (MHT-SAF: 89.68;

MHT-MAF: 89.68), and the same precision (MHT-

SAF: 83.23; MHT-MAF: 83.23). The number of ID

switches decreased by 4 (MHT-SAF: 47; MHT-MAF:

43). MOTA improved 2.58 (MHT-SAF: 41.29; MHT-

MAF: 43.87).

7. Conclusion

In this paper, we proposed a multiple human track-

ing method with alternately updating trajectories and

multi-frame action features (MHT-MAF). Even though

occlusion or motion blur occurs due to the sudden move-

ment of the drone, MAF is stable and can prevent ID

switches. Trajectories and MAF are updated alter-

nately over several steps. In the experiments, we eval-

uated the proposed method using the Okutama-Action

dataset, which consists of aerial view videos. We ver-

ified that the number of ID switches decreased by 69

while almost maintaining both recall and precision, and

we verified the effectiveness of MAF extraction and the

global cropped image. In the future, we will develop a

method that prevents false negatives caused by occlu-

sion.
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